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Abstract

Optimization under uncertainty is performed to determine the optimal parameters

of an active flow control jet to impart robust control during transonic cruise. A

steady blowing jet is optimized on an NACA 64A-010 airfoil to impart a change in

lift greater than or equal to that generated by traditional control surfaces. The design

candidates are computationally evaluated using the NASA flow solver, FUN3D, under

20 unique combinations of angle of attack, Reynolds number, and Mach number

in order to propagate model input uncertainty. The mean change in lift and the

associated standard deviation are included in the optimization framework to help

ensure a robust solution. The mass flow rate required to achieve robust control is

minimized. Due to time constraints, the optimization failed to produce an optimum

solution. However, a number of designs produced an acceptable change in lift to

theoretically control an aircraft. One design required a coefficient of mass flow rate

of just 1.76 × 10−3. Translated to a Being 747, this is approximately 7.136 kg/s or

just 1.14% of the mass flowing through one of its four CF6 engines. The uncertainty

associated with the final design is quantified in the form of a probability box. Total

predictive uncertainty is estimated as ±40.9%, of which ±8.8% is attributed to input

uncertainty, ±13.8% to numerical uncertainty, and±18.3% to model form uncertainty.

The input uncertainty results from the fluctuating inputs and is included in the

optimization under uncertainty. Further analysis with a refined mesh could greatly

decrease numerical uncertainty and a validation experiment could reduce model form

uncertainty.
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COMPUTATIONAL OPTIMIZATION UNDER UNCERTAINTY OF AN ACTIVE

FLOW CONTROL JET

I. Introduction

1.1 Motivation and Proposed Solution

Modern military aircraft have smooth and deliberate geometry with limited sharp

edges to limit observability and increase survivability [1]. However, that shape is

not maintained throughout flight. Control surfaces, such as ailerons and rudders,

change the geometric profile of the aircraft in order to manipulate the air around

it and impart a change in force. This is effective for control purposes but requires

a change in the carefully designed shape of the aircraft. As the shape changes, so

too does the radar cross section (RCS). According to Zikidis, Skondras and Tokas,

“Any irregularity of the surface could incur an RCS increase” [1]. The deflection of

a control surface and the gap associated with that deflection are examples of surface

irregularities. If it were possible to control an aircraft without changing its profile,

the aircraft would theoretically maintain low observability throughout maneuvers.

A potential method for maneuvering without changing the shape of the aircraft

is active flow control (AFC). One goal of this thesis is to evaluate the effectiveness

of AFC to control an aircraft in transonic flight while maintaining a nearly constant

shape. Optimization under uncertainty is performed to determine the most feasible

implementation of a steady, blowing AFC jet that offers adequate control to an aircraft

flying in the transonic regime. If deemed feasible, this AFC control surface could

provide improved survivability to next generation aerial tankers, cargo air transport,

1



and transonic bombers.

Although increased survivability is the primary driver of this analysis, there are

other potential advantages to the use of AFC for aircraft stability and control pur-

poses. Traditional control surfaces account for a large percentage of the volume of an

aircraft’s wing, tail, and rudder. Ailerons and flaps, for example, typically take up

about 15-25% of the wing chord. As a result of the limited volume available in the

wing, particularly at the trailing edge, control surfaces are forced to be mechanically

complex and structurally robust. A delicate balance is required between maintain-

ing low weight, low volume, and the structural integrity required to resist the large

hinge moments generated during controlled maneuvers. Mechanical complexity also

increases manufacturing, assembly, and maintenance costs. [2]

It is possible that AFC could offer decreased complexity, weight, and volume.

However, given the limited development of AFC actuators for stability and control

when compared to traditional control surfaces, it cannot be guaranteed that the use

of AFC would in actuality offer a decrease in complexity, weight, or volume. It is

possible that the pumps, ducting, and valves required to achieve the design goals

will increase the weight and complexity of the system or diminish power available

for performance. By minimizing engine bleed, the design that is notionally most

affordable to implement is determined.

1.2 Solution Approach

To effectively replace a traditional control surface, an AFC jet needs to be capable

of imparting an equivalent or greater turning moment during any stage of flight. If

the blowing or suction jet generates effective control authority at one speed but little

to none at another speed, that jet could not replace a traditional control surface.

For this reason, each design generated during optimization will be computationally

2



evaluated over a range of Mach numbers, Reynolds numbers, and angles of attack

that an aircraft would expect to encounter during flight. The performance affected

under each combination of uncertain flow conditions is included in optimization. This

is known as design optimization under uncertainty.

An aircraft imparts control by changing the lift on one or more of its flight control

surfaces. The AFC jet must, therefore, be capable of imparting a comparable or

greater change in lift to a flight control surface. To ensure this, a constraint will be

imposed that requires the design to generate an equivalent or better than prescribed

change in lift. The mean change in lift and standard deviation over the range of

uncertain inputs are each included in the constraints.

The mass flow rate required by the jet is minimized. Therefore, the design that

requires the least amount of internal ducting and engine bleed is determined.

The four jet parameters, or design variables, that will be optimized are the total

temperature ratio at the jet inlet, the angle of blowing, the location of the jet along

the surface of the airfoil, and the width of the jet. These four design variables will

be varied by the optimization algorithm until a near optimal combination is reached.

The final improved solution will be evaluated to determine ease of implementation and

whether the concept is worthy of further evaluation, such as 3-dimensional analysis

and wind tunnel testing.

Uncertainty quantification is performed on the final improved design. Using the

framework provided by Oberkampf and Roy [3], input uncertainty, model form un-

certainty, and numerical uncertainty are estimated. A probability box is generated

to summarize the total predictive uncertainty.
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1.2.1 Scope

Rather than evaluating the entire flight regime, this study will focus on imparting

control during cruise conditions, where low observability is more likely required. It

is also more likely that the proposed AFC control surfaces will effectively replace

the ailerons, rudder, or elevators used for control during cruise rather than the much

larger flaps used during take-off and landing.

Rather than evaluate an entire aircraft or one of its wings, this thesis will evaluate

an airfoil. If a blowing jet can generate a significant change in lift for an airfoil, one

can reasonably assume that a similar change in lift could be generated by a three-

dimensional wing, causing an aircraft to roll. Further analysis would be required to

prove this assumption; however, only a two-dimensional airfoil will be analyzed over

the course of this thesis.

In reality, each design is also subject to a plethora of uncertain inputs. However,

only three variables are treated as uncertain during optimization to limit the number

of computational evaluations. Additionally, only a select number of samples will be

evaluated for each uncertain variable.

Similarly, only four design variables are allowed to vary during optimization. The

design space is condensed by neglecting suction, unsteady forcing, and other potential

AFC design considerations.

This study does not include empirical validation of the model. The analysis is

purely computational. Experimental results are not readily available for compari-

son because the designs being analyzed are original. Baseline computational results

without the AFC jet are used to estimate model form uncertainty.
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1.3 Outcome and Impact

This analysis will result in an interesting and potentially valuable result with

regards to the implementation of an AFC control surface for use in transonic cruise.

Perhaps more importantly though, this analysis will provide a unique framework

for optimization under uncertainty of an AFC jet on an airfoil. This analysis takes a

stochastic optimization approach that incorporates into the constraints the mean and

standard deviation of a sample flight regime. In doing so, the final solution is more

likely to be statistically robust and effective over a range of flight conditions. Although

this analysis is evaluating cruise conditions, it could be translated to evaluate climb,

loiter, take-off, landing, or even multiple simultaneous flight regimes. This approach

could also be extended to a specific aircraft by evaluating the design at statistically

relevant conditions. Flight data associated with an operational aircraft would only

further decrease the uncertainty of the proposed optimization approach.

1.4 Report Structure

Chapter 2 presents background research and theory regarding many of the fields

associated with this analysis. Previous approaches to similar problems are also out-

lined. Chapter 3 includes a more detailed methodology and further clarification of the

process and tools used for analysis. Chapter 4 provides results and detailed analysis.

Chapter 5 specifies conclusions and recommendations for future research.
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II. Background

2.1 Chapter Overview

This chapter provides a background and review of the literature for the topics

covered throughout this thesis. Key concepts include active flow control (AFC), com-

putational fluid dynamics (CFD), optimization under uncertainty (OUU), verification

and validation, and uncertainty quantification.

2.2 Active Flow Control

Flow control can be broken into two broad categories, active and passive. Active

flow control utilizes energy that is external to the system of interest to manipulate

the flow, while passive flow control uses only the energy available within the control

volume. A common example of passive flow control is a vortex generator. A vor-

tex generator is purely geometric and does not require external energy to operate.

However useful they may be, a vortex generator and all other passive flow control

techniques are always in use, even when that use results in undesirable performance.

AFC, on the other hand, has the potential to be used intermittently or used

in different manners during various stages of flight. The concept of AFC has been

investigated for nearly 90 years [4]. As a result of the requirements for additional

systems and power, however, the use of AFC has been largely limited to research and

specialized aircraft. Limited high quality wind tunnel data has also contributed to

the limited implementation of AFC through the years. According to Radaspiel et al.

AFC experiments are costly and have historically resulted in error-prone data [4].

AFC encompasses a broad range of techniques. Three common AFC approaches

are fluidic actuators, moving objects or surface actuators, and plasma actuators [5].

Fluidic actuators inject fluid to (blowing) or ingest fluid from (suction) the flow.
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Moving object or surfaces utilize a moving surface to manipulate local fluid motion

[5]. A morphing surface, such as the NASA morphing wing, is an example of a moving

object or surface AFC. Plasma actuators produce steady jets by ionizing air from the

freestream. Plasma actuators do not require moving parts and, therefore, require only

an electric current and some form of conduit to operate [6]. Each AFC approach can

be further expanded to a number of more specialized domains. Figure 2.1 shows a

breakdown of a number of AFC actuators and techniques that have been investigated

[5].

Figure 2.1. Classification of AFC actuators (reproduced from Ref.[5]).

This analysis will consider only fluidic actuators, particularly steady nonzero mass

flux actuators. Steady blowing is particularly interesting as a result of its inherent

simplicity. Steady blowing requires little to no moving parts especially when used
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in conjunction with jet engines [4]. However, the plumbing and ducting required

does induce a weight penalty. Plasma actuators also do not require moving parts,

but steady fluidic actuators can generate higher velocity jets [5]. Although it has

been shown that there are advantages to unsteady forcing [5], steady blowing or

suction offers the option to perform simpler steady-state analysis. In addition to

simpler computational analysis, experimental analysis is simpler for steady blowing

or suction and is less prone to error. By limiting this evaluation to steady blowing,

the problem is computationally simplified and theoretically more accurate.

The proposed solution will take advantage of steady blowing, but only for the

short period of time in which a maneuver is performed. Unlike pure steady blowing,

a control valve or similar device would be required. Given the requirement for a valve,

unsteady actuation could be implemented in future studies.

2.3 AFC Implementation and Design Goals

Researchers have evaluated AFC to provide a number of different aerodynamic

benefits. One proposed implementation of AFC is to delay separation at near-stall

conditions. By delaying separation, an airfoil would remain effective at an angle of

attack that was previously limited and would achieve a larger lift coefficient. With

an increased lift coefficient, greater lift can be generated at lower speeds thereby

enhancing performance during take-off and landing. With this goal in mind, Huang et

al. performed an optimization study involving the implementation of an AFC steady

jet on an NACA 0012 airfoil at a high angle of attack and low Reynolds number [7].

By varying jet location, amplitude, and angle, Huang et al. demonstrated that a

steady jet could effectively increase the lift-to-drag ratio at 18◦ angle of attack using

blowing, suction, and a combination of the two. They showed that suction created a

large region of low pressure on the upper surface that increases lift, while keeping the
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flow more attached to reduce pressure drag. Small amplitude downstream blowing

also improved lift and drag characteristics, but by improving circulation.

Pehlivanoglu et al. took a similar approach to accomplish a different goal; in-

creased aircraft performance in the transonic regime [8]. By varying the jet parame-

ters and number of jets, Pehlivanoglu et al. demonstrated that a 20.7% improvement

in lift-to-drag ratio is possible for a 2-dimensional NACA 64A-010 airfoil with three

AFC jets. They attributed this improvement in part to the movement of the shock

wave towards the trailing edge of the airfoil. Pehlivanoglu et al. validated compu-

tational results using the experimental results generated by Smith and Walker [9].

Their computational results showed ”qualitative agreement” with the experimental

data, but the difference was not quantified. Smith and Walker’s experimental data

is also used for validation by Qin et al. in a similar transonic study [10]. Due to its

wide use and extensive results, this study also uses the experimental results of Smith

and Walker for comparison.

Radaspiel et al. compared two blowing strategies: the Coanda-type wall jet and

the vortex generator jet [4]. Like a traditional vortex generator, they showed that

the vortex generator jet delayed flow separation and airfoil stall. The Coanda-type

wall jet utilizes tangential blowing to provide increased lift by improving large flow

turning on airfoils. Their analysis, like that of Huang et al. [7], focused on a low

Reynolds number application typically associated with take-off and landing.

In a study similar to this one, Seifert et al. utilized AFC to impart roll control

[11]. For low subsonic flight, they effectively demonstrated roll control of a small

radio-controlled unmanned aircraft in both wind tunnel experiments and flight test.

By activating an array of zero mass flux jets on a portion of one wing, they increased

lift and executed a controlled roll. The work of Seifert et al. offers some proof of

concept for the current study, but for very different flow conditions.
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2.4 Computational Fluid Dynamics

This study relies on computational fluid dynamics (CFD) for analysis. CFD com-

bines fluid dynamics, computer science, and mathematics to approximate a solution

to the equations of fluid motion. “CFD is fundamentally based on the governing equa-

tions of fluid dynamics.” [12] The first governing equation is the continuity equation

and states that mass cannot be created or destroyed. It is

∂ρ

∂t
+∇ · (ρV ) = 0 (2.1)

where ρ is density, t is time, and V is velocity vector of the flow. [12]

The second governing equation is the momentum equation, which stems from New-

ton’s second law of motion. In fluid flow, the conservation of momentum equations

are known as the Navier-Stokes equations. Assuming a fluid continuum, an isotropic

fluid, and negligible body forces, in two dimensions, the equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+
µ

ρ

∂2u

∂x2
+
µ

ρ

∂2v

∂y2
(2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+
µ

ρ

∂2v

∂x2
+
µ

ρ

∂2v

∂y2
(2.3)

where x and y are Cartesian coordinates, u and v are the corresponding velocity

components, and µ is the dynamic viscosity of the fluid.[12]

The final governing equation is the energy equation. It is derived from the first

law of thermodynamics and can be mathematically expressed, in two dimensions, as

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂x
=

λ

ρCp

∂2T

∂x2
+

λ

ρCp

∂2

∂y2
(2.4)
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where λ is the thermal conductivity, T is the temperature, and Cp is the specific heat.

[12]

The governing equations cannot be solved algebraically. Instead, CFD programs

approximate a solution to a discretized form of the governing equations by iteratively

solving the equations at a number of points within a flow field. The accuracy of the

CFD solution approximation is dependent on the order of the discretization method

and the resolution of the points in the flow field. The user must carefully specify

boundary conditions and the points to be evaluated for CFD programs to reach an

accurate solution. Before grid convergence, more points result in a more accurate

solution, particularly in complex regions, but require greater computational expense.

CFD also takes into account turbulence, or random fluctuations in the fluid flow

[12]. Nearly all fluid flows of engineering interest are turbulent. There are a number of

turbulence models that work to approximate the effects of turbulence, each of which

has unique advantages and disadvantages. The user must carefully select a turbulence

model that is appropriate for the flow conditions and physical geometry of interest.

Refer to Wilcox for additional detail about turbulence models [13].

2.5 Design Optimization

Design optimization utilizes mathematics to determine an optimum solution that

meets a number of design requirements or constraints. In iterative solution methods,

where the objective function may consist of nonlinear, coupled, partial differential

equations (such as the Navier-Stokes equations) that may contain a discontinuous

solution space, each new design is selected using “optimization concepts and proce-

dures” which take into account previous designs [14]. The objective function must

provide a numerical representation of a design’s merit. The objective function will

be maximized or minimized depending on the design goals. Additionally, perfor-
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mance requirements or design variable restrictions must be mathematically expressed

as constraints.

There are a number of optimization strategies available. Each strategy differs in

how it chooses the next design point. Some algorithms guarantee convergence to an

optimum solution while others do not. Some algorithms provide a global search of

the design space while others perform local searches. Each algorithm offers its own

set of advantages and disadvantages.

Previous AFC optimization studies have used evolutionary algorithms [7] [8]. Evo-

lutionary algorithms (also known as genetic algorithms) attempt to mimic Darwin’s

theories of evolution and survival of the fittest. As is true in nature, the best de-

signs are assigned a greater likelihood of reproducing and passing on their positive

attributes to the next generation. To avoid premature loss of valuable traits or perfor-

mance characteristics, genetic algorithms also incorporate the concept of mutation.

Mutation diminishes the likelihood of the solution converging to a local optimum.

As the algorithm advances, each generation produces an improved or comparable de-

sign until the global optimum solution is reached [14]. Although effective and global,

evolutionary algorithms often require thousands or tens of thousands of function eval-

uations to reach an optimal solution [15]. To lessen the computational burden and

reduce the number of expensive function evaluations for this study, a surrogate-based

global optimization algorithm is utilized in this study to limit function evaluations.

Sandia National Laboratories’ Dakota surrogate-based global optimization algo-

rithm generates a surrogate model that generally represents the first-order results of

a more expensive computational model [15]. Using a Guassian process, a response

surface, or surrogate, is generated from a small sample of computational results. One

such Gaussian process, known as Kriging, produces “smooth surface fit models of

the response values from a set of data points.” [15] Further clarification of Dakota’s
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Gaussian process algorithm is included in the Dakota User Manual [15].

The results associated with an initial sample must be provided to the algorithm

in order to generate a surrogate. There are a number of ways to generate the initial

sample. In this study, the initial sample is generated randomly using Latin hypercube

sampling (LHS). LHS guarantees diversity of initial designs. Rather than selecting

random design points, the range of each uncertain variable is split into N bins, where

N is the number of samples requested. For each uncertain variable, a sample is

selected randomly from each bin [15]. The variables are randomly combined to form

N initial designs that span the design space.

A surrogate can be optimized using a number of optimization techniques. In

this study, the surrogate is optimized using an evolutionary algorithm, specifically

SOGA (single objective genetic algorithm). An evolutionary algorithm is chosen for

its global search capability. A global optimizer will return the optimal point from the

entire design space rather than a local optimum. Evolutionary algorithms are also

effective in discrete solution spaces. However, this advantage is not relevant in this

study because Guassian process surrogates are inherently continuous.

In surrogate-based optimization, the surrogate is optimized. The optimal surro-

gate design is evaluated using the high-fidelity computational solver, the surrogate is

updated, and the process is repeated until the stopping criteria is met and a near-

optimal solution is reached. This process takes advantage of the global search made

possible by genetic algorithms while limiting the number of computationally expensive

function evaluations required. The process is shown in Figure 2.2.
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Figure 2.2. Surrogate-based global optimization.

The surrogate-based optimization strategy selects the predicted best design for

computational analysis. Therefore, it exploits the design space but does not inten-

tionally explore it. Another surrogate optimization technique, efficient global opti-

mization (EGO), strikes a balance between exploration and exploitation. Therefore,

it is more likely to efficiently improve a surrogate. EGO maximizes an expected im-

provement function. The expected improvement function incorporates statistics to

predict what design point is most likely to produce an improved objective function. If

a region of the design space is under-explored, the uncertainty in the objective is large

and so is the potential for improvement. EGO generates the surrogate in the same

way as surrogate-based global optimization (using a Gaussian process). It differs only

in its selection of the next design point to evaluate. [16]

2.6 Optimization under Uncertainty (OUU)

OUU is a nondeterministic approach to determining the best solution. The inputs

are treated as uncertain. For each uncertain input, a number of samples represen-
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tative of the uncertain variable distribution are evaluated. For each combination of

uncertain inputs, a unique response is generated; thus a given array of inputs yields a

corresponding array of solutions. Statistics on the array of solutions are incorporated

into the objective and constraint functions. [15]

Uncertain inputs can be classified as either aleatory or epistemic. Aleatoric un-

certainty is inherently random and follows some known distribution. Epistemic un-

certainty, on the other hand, reflects a lack of knowledge and does not follow a

distribution or follows a distribution that is unknown or not well understood. [3]

Although OUU is not a new concept, this study offers the unique contribution of

applying it to AFC. Freeman and Roy utilized OUU to optimize several parameters

of 3-dimensional tractor-trailer base-drag reduction devices. By optimizing under

uncertain wind speed, direction, and flap deflection angle, they determined a relatively

robust design. In their study, wind speed and direction were treated as aleatory

input variables and flap deflection angle was treated as epistemic. They also applied

additional sources of uncertainty to the optimized solution to quantify total predictive

uncertainty. The general process of this study will closely follow that of Freeman and

Roy. [17]

2.7 Verification, Validation, and Uncertainty Quantification

In order to determine total predictive uncertainty of a given model, as is done

in this study, a verification and validation study must be completed. Verification is

the process of ensuring that the equations being solved in computations are being

solved properly. Validation is the process of ensuring that the equations being solved

in computations are appropriately applied to the problem. In other words, validation

ensures that the right equations are being solved and verification ensures that the

equations are being solved right [3].
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2.7.1 Verification and Numerical Uncertainty

Verification can be broken into two distinct categories, code verification and so-

lution verification. Code verification is the practice of determining that a specified

code is properly implemented. In scientific computing, the exact solution is often not

available. In these cases, the solution can not be checked for correctness in the pre-

ferred manner. Instead codes can be verified in a number of different ways. In order

of increasing rigor, these include visual checks, code-to-code comparisons, discretiza-

tion error quantification, convergence tests, and order of accuracy tests. The order

of accuracy test, the most rigorous code verification practice, is the comparison of

the formal order of accuracy with the observed order of accuracy. Order of accuracy

is the rate at which discretization error decreases with systematic mesh refinement.

The observed order of accuracy must asymptotically approach the formal order of

accuracy as the mesh is systematically refined. The formal order of accuracy is the

theoretical rate at which the discretization error decreases while the observed order

of accuracy is the rate at which the discretization error actually decreases with sys-

tematic mesh refinement. The observed order of accuracy (p̂) can be determined by

comparing the results of three systematically refined meshes using

p̂ =
ln(f3−f2

f2−f1 )

ln(r)
(2.5)

where f3 is the solution determined using the coarsest of three systematically refined

meshes, f2 is the solution determined using the second finest of three systematically

refined meshes, f1 is the solution determined using the finest of three systematically

refined meshes, and r is the refinement factor. [3]

Systematic mesh refinement is the uniform and consistent refining of grids or

meshes. Uniform refinement is the practice of refining grids by the same factor in all
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directions over the entire grid. Consistent refinement retains or improves the mesh

growth rate, curvature, skewness, and aspect ratio. [3]

Solution verification is the practice of estimating numerical error. Discretization

error, round-off error, and iterative error each contribute to total uncertainty due to

numerical error. The equation for total uncertainty due to numerical error (UNUM)

is

UNUM = UDE + UIT + URO (2.6)

where UDE is the uncertainty due to discretization error, UIT is the uncertainty due

to iterative error, and URO is the uncertainty due to round-off error. [3]

Iterative error is the difference between the current solution and the fully iterated

solution. If the solution is allowed to run until the residuals have decreased by at least

seven orders of magnitude, the iterative error is assumed to be zero. Otherwise, it

can be estimated by comparing a solution with a finite number of iterations to a fully

converged solution in which the residuals have decreased by at least seven orders of

magnitude. To provide an accurate estimate of iterative error, one of the simulations

is allowed to converge entirely.

Round-off error is the result of using finite arithmetic on digital computers [3].

Computers use a finite number of digits in every computation. This can lead to error

as rounded numbers are multiplied by one another over time. Using double-precision,

round-off error is typically very small and is approximated as one percent of the

discretization error in this study.

Discretization error is the difference between the exact solution to the discretized

equations and the exact solution to the governing differential equations [3]. Because

the exact solution to the governing equations is often unknown, discretization er-

ror can be estimated using Generalized Richardson Extrapolation which estimates
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discretization error (εi) according to

εi =
fi+1 − fi
rp − 1

(2.7)

where i is representative of the mesh being evaluated, i + 1 is the mesh one level

coarser, and p is the order of accuracy of the discretized equations. The uncertainty

due to discretization error, UDE, is estimated using

UDE = Fs ∗ εi (2.8)

where Fs is a factor of safety, which can be varied depending on the reliability of the

solutions.

The reliability of solutions can be determined by comparing the observed order of

accuracy over a series of systematically refined meshes to the formal order of accuracy,

pf . If the observed order of accuracy falls within 10% of the formal order of accuracy,

the solution can be considered reliable and a factor of safety of 1.25 can be used.

Otherwise, a factor of safety of 3 should be used to insure that the uncertainty due

to discretization error is not underestimated [3].

2.7.2 Validation and Model Form Uncertainty

A common validation approach in engineering is the comparison of computational

results to experimental results. The percent difference between experimental and

computational results is often provided to quantify this validation. A more rigorous

approach known as the area validation metric can also be used, provided a number

of design points are available for comparison.

The area validation metric (d) is the area between two empirical distribution

functions (EDF), one representing experimental results and the other representing
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computational results. An EDF is an experimentally generated estimation of the

cumulative distribution function that has one or more uncertain inputs. An EDF is

created by computing the system response quantity (SRQ) for each combination of

aleatoric inputs for a fixed value of the epistemic input. [3]

The area validation metric is defined algebraically as

d =

∫ ∞
−∞
|F (Y )− Sn(Y )|dY (2.9)

where Y is the SRQ, F (Y ) is the computational EDF, and Sn(Y ) is the experimental

EDF. The area validation metric can be used to estimate model form uncertainty

by comparing a number of area validation metrics to one another. Model form un-

certainty results from the differences between the model and the real-world event

that the model is attempting to capture. An example of the area validation metric

between two distinct EDF’s is included in Figure 2.3 [18]. Each EDF represents a

constant epistemic variable with variable aleatory inputs. The EDF from the sim-

ulation looks smooth because a large number of samples, N , were computationally

evaluated. The EDF from the experiment is blocky because only four experimental

samples are available for comparison.
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Figure 2.3. Example area validation metric between two distinct EDF’s. (reproduced
from Ref. [18])

In this study experimental results are not available for comparison because the de-

signs being analyzed are original. Different turbulence models, computational solvers,

boundary conditions, and time steps each predict different results to the same real-

world event. Without an adequate validation experiment, it is not possible to say

which prediction is most accurate. Therefore, the model form uncertainty is less

understood and shaped by the differences between results. In such cases, the maxi-

mum difference between results serves as a conservative estimate of the model form

uncertainty.

2.7.3 Total Predictive Uncertainty

Total predictive uncertainty is a combination of numerical uncertainty, input un-

certainty, and model form uncertainty. Input uncertainty is the range of solutions

falling within the bounds of all EDF’s associated with a particular solution. There

will be an EDF for each epistemic input that is evaluated. The input uncertainty

includes the uncertainty associated with the aleatory and epistemic variables because

each EDF takes into account aleatoric variability.
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A probability box (p-box) is a visual representation of total predictive uncertainty.

It allows the reader to quickly differentiate between sources of uncertainty. The

center of the p-box is the input uncertainty and encompasses all of the EDF’s. The

second tier is the model form uncertainty with a width of d, applied to both upper

and lower extents of the input uncertainty. The third tier, the outside portion, is

the numerical uncertainty. For clarification, an example p-box representing total

predictive uncertainty is included in Figure 2.4 [19]. In the example, the SRQ is

thrust.

Figure 2.4. Example p-box representing total predictive uncertainty. (reproduced
from Ref. [19])
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2.8 Summary

AFC jets have not been optimized to impart control during transonic flight. Fur-

ther, OUU has yet to be applied to the AFC jet problem. This study addresses each of

these tasks utilizing theory and previous work laid forth in this chapter. Uncertainty

will also be quantified for the final design.

22



III. Research Methodology

3.1 Chapter Overview

A single blowing AFC jet is optimized under uncertainty to impart control to an

airfoil during transonic cruise conditions. The nondimensional mass flow rate through

the jet is minimized. The jet location, angle of blowing, total temperature ratio at

the inlet, and jet diameter are variable. Optimization is performed using Dakota’s

surrogate-based global optimization algorithm. Each design is prescribed by Dakota,

then computational model geometry is generated using Pointwise. Each design is

evaluated using Fun3D under 20 unique combinations of Mach number, Reynolds

number, and angle of attack. The mean change in lift and standard deviation are

determined for each design and returned to Dakota as constraints. The next design

point is prescribed by Dakota and the process repeats. The optimization process con-

tinues until there is little to no improvement in the mass flow rate between iterations.

The process is graphically expressed in Figure 3.1.
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Figure 3.1. Graphical representation of optimization process.

3.2 Sampling Approach

To effectively replace a standard control surface, the AFC jet must be capable

of generating control over the entire flight regime. To insure this, each design is

evaluated over a range of uncertain flow conditions representative of transonic cruise.

An airliner or cargo jet cruises at a number of varying flight conditions. Its

altitude and speed vary over the course of each flight. So too do the characteristics of

the air through which it is flying. The temperature, density, and wind direction are

constantly changing. The weight of an aircraft changes as fuel is burned and from

flight to flight. The number of cruise conditions an aircraft could encounter is nearly

infinite. A finite number of flight conditions, therefore, must be carefully selected.
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3.2.1 Mach Number

Transonic flight is the region of flight during which some portion of the flow exceeds

the speed of sound. Aircraft tend to cruise in the transonic regime at a velocity that

allows for the greatest balance between fuel efficiency and timeliness. Drag increases

substantially in the transonic regime due to the formation of shock waves and the

onset of wave drag. This is why the sound barrier was widely viewed as unbreakable

in the early years of aviation. As an aircraft approaches the speed of sound, the drag

increases substantially. The Mach number at which this sharp rise in drag occurs is

called the drag divergence Mach number (MDD). [2]

The exact value of the MDD is somewhat arbitrary because the drag rise is not

instantaneous. As an example, a typical drag coefficient versus Mach number plot is

included in Figure 3.2 [20]. In order to estimate MDD, many of the large aerospace

companies have adopted their own definition. The Boeing Company defines MDD

as the Mach number at which the drag coefficient increases by 0.0020. This usually

corresponds to a Mach number about 0.08 greater than the critical Mach number

(MDDBoeing ≈Mcrit+0.08). The critical Mach number (Mcrit) occurs where supersonic

flow first exists at some point over the airfoil. On the other hand, The Douglas

Company defined MDD as the Mach number at which the rate of change of drag

Figure 3.2. Drag rise due to wave drag in the transonic flight regime. (reproduced
from Ref. [20])
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with respect to Mach number first reaches 0.10. This corresponds to a larger Mach

number than that of Boeing, typically about 0.14 greater than Mcrit (MDDDouglas ≈

Mcrit+0.14). According to Raymer, jet transports usually cruise at Boeing’s definition

of MDD and have a maximum level speed about equal to Douglas’s definition. These

estimations assume an airfoil that is not supercritical. [2]

Assuming Raymer’s estimate is accurate, the cruise Mach number of a transport

jet is approximately equal to

Mcruise ≈MDDBoeing ≈Mcrit + 0.08 (3.1)

This cruise Mach number, however, is variable. Winds are constantly changing over

the course of a flight causing minor changes in airspeed. A pilot may also choose to

fly at an airspeed less than or greater than what is typically recommended for various

reasons such as air traffic, timeliness, or mission requirements. Although the true

velocity variation is unknown (epistemic), this study assumes a normal distribution

about MDDBoeing (aleatoric). This assumption allows for the development of EDF’s

and a p-box to quantify input uncertainty. The MDDDouglas is treated as two standard

deviations greater than the mean cruise velocity. This assumption ensures that there

is only a 2.27% probability of exceeding what Raymer describes as the maximum level

speed.

Cruise Mach is treated as the freestream Mach number of the air at the boundary

of the grid being investigated. Therefore, it does not matter whether the aircraft is

flying into a steady head wind or with a steady tail wind. Sideslip is not considered due

to the 2-dimensional nature of this analysis. And by evaluating the airfoil at speeds

relative to its own critical Mach number, this analysis is theoretically independent of

airfoil geometry.

A modified Latin hypercube sampling approach is used to sample from the as-
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sumed normal distribution. Each design point is evaluated over five Mach numbers

in an attempt to represent the normal distribution while limiting computational re-

quirements. Rather than selecting a random Mach number from each bin, the five

selected Mach numbers will come from the center of each of the five bins. This is

equivalent to sampling at cumulative probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9. Al-

though this limits the variability of analysis, it allows for a direct comparison between

each design. The sampling approach used to select cruise Mach numbers is illustrated

in Figure 3.3.

Figure 3.3. Sampling approach utilized to select cruise Mach numbers.

The critical Mach number is not constant during flight; it changes with angle of

attack and Reynolds number. However, this study will assume a constant Mcrit. To

determine a representative Mcrit, a number of Mach numbers were computationally

analyzed under the presumed average flow conditions (α = 1.5◦ and Re = 1.955 ∗

106). The freestream Mach number at which supersonic flow is first achieved is,
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by definition, the critical Mach number. At these average flow conditions, Fun3D

returned Mcrit of 0.69 for the the NACA 64A-010 airfoil.

3.2.2 Reynolds Number

The cruise altitude of a typical transonic aircraft is also subject to variability.

The cruise altitude is influenced by the distance of the flight. Although there is an

ideal cruising altitude for each aircraft, it may not be worth the fuel to climb to

that altitude for a short flight. Storms, air traffic, and mission requirements also

cause variability in cruising altitude. Altitude, therefore, does not necessarily follow

a normal distribution and will be treated as an epistemic variable. The maximum and

minimum cruise altitudes a transonic aircraft might experience are analyzed. Those

altitudes are assumed to be 20,000 and 40,000 feet, respectively. The CFD solver,

Fun3D, does not accept altitude as an input. Instead Reynolds number per unit

chord length will be varied to represent changes in altitude. This also accounts for

potential variations in atmospheric conditions, such as local fluctuations in density,

temperature, and pressure. Reynolds number and Mach number are not independent

but are each required to properly specify freestream conditions. Assuming standard

atmospheric conditions and the mean cruise Mach number, the Reynolds numbers per

unit chord length corresponding to 20,000 and 40,000 feet are 0.95 and 2.96 million,

respectively. The equation used to determine Reynolds number per unit chord length

(Re/c) of an airfoil is

Re/c =
ρ∞u∞
µ∞

(3.2)

where ρ∞ is the density of the freestream air, µ∞ is the kinematic viscosity of the

freestream air, and u∞ is the x-component of velocity of the freestream air.
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3.2.3 Angle of Attack

The angle of attack of the airfoil (α) is also variable during cruise. Even when

flying straight and level, the angle of the wing relative to the freestream air could

vary substantially. The angle of attack of the airfoil contributes to the lift generated

by the airfoil (l). At angles of attack well beneath the angle of stall, as is the case in

cruise, the lift generated by a 2-dimensional airfoil is

l = Clq∞c (3.3)

Cl = Clαα (3.4)

where Clα is the lift-curve slope of the particular airfoil and q∞ is the dynamic pressure

of the freestream air [21].

In steady, level, unaccelerated flight, the angle of attack is set such that lift is

equal to weight. Under constant freestream conditions, the angle of attack is the only

factor which can change the lift. The angle of attack, therefore, must be adjusted to

account for the weight of the aircraft in order to maintain steady level flight. If an

aircraft is fully fueled and carrying its maximum payload, the angle of attack must be

relatively large. If an aircraft is empty and low on fuel, the angle of attack is relatively

small. The weight of an aircraft is also constantly changing as fuel is burned and in

the case of munition or cargo drops, the weight can change substantially in an instant.

To limit fuselage drag during cruise, aircraft designers generally design the wings

at a fixed angle of attack, or the angle of incidence, when the fuselage is level. The

angle of incidence is chosen such that the fuselage is nearly level for the majority

of cruise conditions. This insures minimum fuselage drag during cruise. “General

aviation and home built aircraft have an incidence of about 2◦, transport aircraft

about 1◦, and military aircraft approximately zero” [2].
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This analysis focuses on improving survivability, possibly for use by military air-

craft. However, the airfoil of interest is nearly symmetric and would likely be flown

with an angle of attack greater than 0◦ to attain the lift required to maintain level

cruise. Given the general nature of this analysis, it is not possible to determine the

true distribution of the angle of attack. Using Raymer’s estimates, however, this

study predicts the range of angles over which the airfoil might be flown. To insure

that the entire design space is evaluated, a maximum and minimum angle of attack

of 3◦ and 0◦ will be evaluated, respectively.

3.2.4 Sampling Summary

Each design is evaluated at five Mach numbers, two Reynolds numbers, and two

angles of attack. Thus, each design will be evaluated at 20 unique combinations of

flow conditions. The design points to be evaluated are detailed in Table 3.1.
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Table 3.1. The 20 cases evaluated for each design point to ensure a robust solution.

3.3 Problem Formulation

3.3.1 Objective Function

The AFC jet is optimized to minimize the mass flow rate required to achieve a

robust change in lift for an airfoil. By minimizing the mass flow rate, a design that

achieves the performance objectives and requires the least amount of engine bleed

and internal ducting is determined. In this analysis, the coefficient of mass flow rate

Cṁ is used as the objective function. Cṁ is defined as [4]

Cṁ =
ṁjet

ρ∞V∞Sref
=
ρjet
ρ∞

djet
c

|Vjet|
|V∞|

(3.5)

where ρjet is the density of the air leaving the jet, |Vjet| is the velocity magnitude of

the air leaving the jet, and djet is the diameter of the base of the jet.
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3.3.2 Design Variables and Physical Constraints

The four design variables for the optimization include:

• `/s: location of the center of the jet along the surface of the airfoil (unitless)

• Djet/s: diameter of the jet on the surface of the airfoil (unitless)

• Tt,jet/T∞: ratio of total (stagnation) temperature at the jet to the freestream

temperature (unitless)

• θ: angle of the flow exiting the jet relative to the surface of the airfoil (degrees)

where s is the arclength or the length of the skin of the airfoil. Each of the four

design variables is allowed to vary to determine the optimal or near-optimal solution.

The design variables are graphically expressed in Figure 3.4. Notice the difference

between the design variable, Djet and the dependent variable, djet (used to determine

Cṁ).

Figure 3.4. Graphical representation of each design variable (NACA 64A-010 airfoil).

The relationship between Djet and djet is shown in Equation 3.6.

Djet =
djet
sinθ

(3.6)
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Djet/s is limited to a maximum value of 1.25% (approximately 2.5% of the chord).

This constraint ensures that a jet can be realistically modeled as a single channel in

the airfoil. Dannenberg and Weiberg showed that increasing the area of AFC to

greater than 2.5% of the chord does not significantly increase lift [22]. The diameter

must also be positive to remain physically possible.

The location of the jet is limited only by geometry. It is allowed to vary between

0 and the arclength, s (the length of the skin of the airfoil). `/s = 0 is the upper

surface trailing edge, `/s = 1/2 is the leading edge, 0 < `/s < 1/2 is the upper

surface, 1/2 < `/s < 1 is the lower surface of the airfoil, and `/s = 1 is the lower

surface trailing edge. The following constraints are required to ensure that the jet

does not extend past the trailing edge on the lower or upper surface.

`/s− Djet/s

2
≥ 0 (3.7)

`/s+
Djet/s

2
≤ 1 (3.8)

The AFC jet is treated as a nozzle. At a nozzle, the magnitude of the flow is

limited to Mach 1 due to mass flow choking [21]. Therefore, the total temperature

ratio (Tt,jet/T∞) must be limited such that the flow does not exceed Mach 1. The

jet exit velocity (Vjet) can be approximated as a function of Tt,jet/T∞ by assuming

an isentropic process and Tjet = T∞. Under these assumption, the jet exit velocity is

[23]

Vjet =

√
2γRTt,jet
γ − 1

(1− (
P∞
Pt,jet

)
γ−1
γ ) (3.9)

where γ is the ratio of specific heats and R is the gas constant for air. From the

isentropic relations,

Pt,jet
P∞

=
Pt,∞
P∞

Pt,jet
Pt,∞

=
Pt,∞
P∞

(
Tt,jet/T∞
Tt,∞/T∞

)
γ−1
γ (3.10)
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And for the average freestream conditions evaluated (M∞ = 0.75),

Pt,jet
P∞

= 1.4523(
Tt,jet/T∞
1.1125

)
γ−1
γ (3.11)

To remain subsonic, Vjet cannot exceed the speed of sound (a). The speed of

sound for an ideal gas is

a =
√
γRT (3.12)

The smallest speed of sound evaluated in this study occurs at 40,000 feet and is

equal to 297.2 meters per second. To ensure that Vjet remains subsonic and positive,

Tt,jet/T∞ is constrained between 0.302 and 1.581. These bounds are determined by

solving Equations 3.9 and 3.11 for Vjet = 0 and Vjet = 297.2 m/s.

The angle of the AFC jet flow is limited between 3 and 177 degrees to preclude

non-physical co-planar flow. This angle is measured clockwise from the surface in the

direction of the interior, as shown in Figure 3.4.

3.3.3 Performance Constraint

During cruise, roll control is often utilized. Roll control is provided by changing

the lift equally and opposite on each of the wings to impart a rolling moment about

the longitudinal axis. An operator typically accomplishes this using ailerons, spoilers,

or a combination of the two. The AFC jet must generate a comparable change in lift

to adequately replace these control surfaces.

The European Aviation Safety Agency requires that cruising jet transport aircraft

can perform a 60-degree roll in 11 seconds [24]. This serves as a baseline for adequate

roll control. The Federal Aviation Administration does not specify a minimum rate

of roll during cruise.

The roll rate of an aircraft (p) can be expressed as a differential equation. Equation
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3.13 is derived from the summation of moments about an aircraft.

Ixṗ = Mjet − LpIxp (3.13)

Ix is the moment of inertia about the x -axis (longitudinal axis), Mjet is the moment

generated by the AFC jet, ṗ is the time rate of change of the roll rate, and Lp is the

roll moment directional derivative resulting from the aircraft’s resistance to rolling.

It is mathematically expressed as

Lp =
qSb2CLp
2IxV∞

(3.14)

where S is the area of the wing, b is the wing span, and CLp is the roll damping

coefficient due to wing surface area.

The moment required to perform a 60-degree roll in 11 seconds is determined by

assuming an initial roll rate of zero. Using the aircraft data provided by Nelson [25],

the moment required to roll a Boeing 747-200 is 77,120 pound-feet. The ailerons on

a Boeing 747-200 encompass approximately 30% of the outboard portion of the wing

with the exception of 5% at the wingtip [25]. If AFC jets were implemented over the

same 25% of each wing, that portion of wing would require a change in airfoil lift

coefficient (∆Cl) of 0.1022. In contrast, a narrow-bodied Convair 880 jet transport

would require a ∆Cl of just 0.0335 to accomplish the same task. Although a Boeing

747 is a larger aircraft than most cargo aircraft, the change in lift required to roll

serves as the minimum acceptable change in lift in this analysis. The constraint is

expressed in Equation 3.15 in standard form.

0.1022−∆Cl + 2σ∆Cl ≤ 0 (3.15)

∆Cl is the mean change in lift of all of the cases evaluated and σ∆Cl is the sample
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standard deviation. By organizing the constraint in this manner, each qualifying jet

design has a 97.7% probability of meeting or exceeding a ∆Cl of 0.1022 over the

entire range of predicted cruise conditions (assuming a normal distribution). ∆Cl is

determined for each computation by comparing the coefficient of lift generated by the

airfoil with the AFC jet to the same airfoil without one. ∆Cl and σ∆Cl are determined

for each design point using Eqs. 3.16 and 3.17. Subscript i represents each of the 20

cases outlined in Table 3.1.

∆Cl =
1

20

20∑
i=1

∆Cli (3.16)

σ∆Cl =
1

19

20∑
i=1

(∆Cli −∆Cl)
2 (3.17)

3.3.4 Optimization Parameters

Dakota’s surrogate based global algorithm is utilized for construction of the surro-

gate. Dakota’s SOGA algorithm is used to optimize the surrogate. The recommended

default parameters are utilized for each. The seed used by SOGA is 10983. The initial

sample is generated using LHS and the seed, 531.
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3.3.5 Optimization Problem

The optimization problem is summarized in Equation 3.18.

Minimize Cṁ =
ρjet
ρ∞

djet
c

|Vjet|
|V∞|

subject to ∆Cl − 2σ∆Cl ≥ 0.1022

0 ≤ Djet/s ≤ 0.0125

3◦ ≤ θ < 177◦

0.302 ≤ Tt,jet/T∞ < 1.581

`/s− Djet/s

2
≥ 0

`/s+
Djet/s

2
≤ 1

(3.18)

Although the total temperature and pressure at the jet are specified as constant

for each case, Cṁ is not necessarily constant.
ρjet
ρ∞

and
|Vjet|
|V∞| are functions of the local

pressure and temperature at the surface of the airfoil. The average Cṁ from the 20

cases is returned to Dakota to account for this phenomenon. The Cṁ for each case is

determined from the Fun3D output data.

All but the first constraint are linear functions of the design variables. The first

constraint, however, relies on the output of the coupled, nonlinear, and 2nd-order

Navier-Stokes equations. Therefore, the constraint is nonlinear and subject to poten-

tial discontinuities due to the presence of shock waves.

3.4 Computational Model

Like that used in the experimental study of Smith and Walker, an NACA 64A-010

airfoil with a one-degree deflection of the trailing edge is used for evaluation [9]. In

reality, few, if any, operational aircraft utilize this airfoil. However, aircrafts often
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start design evolution with a 6-series NACA airfoil, such as the NACA 64A-010, and

modify it to meet design requirements [2].

By evaluating the NACA 64A-010 airfoil at cruise speeds near its own drag diver-

gent Mach number, the results can be more readily extrapolated to airfoils used in

practice by transonic jets. The flow conditions seen by the NACA airfoil are theoret-

ically similar to those seen by a transonic jet flying near its own drag divergent Mach

number. In both cases, a minor but inconsequential shock wave can be expected

during cruise.

The airfoil and its associated grid have been generated using Pointwise grid-

generation software based upon dimensions specified by Smith and Walker [9]. Fun3D

is a 3-dimensional flow solver, so the 2-dimensional grid is given a pseudo 3rd dimen-

sion by extending it one cell in depth.

The airfoil is positioned such that the positive x -axis is the direction of freestream

air at 0◦ angle of attack (right). The positive z -axis is oriented up. The y-axis is

oriented along the would-be span of the wing (into the page). The top and bottom

surfaces of the airfoil are specified as viscous boundaries with a no-slip condition. The

outer boundary of the grid is treated as the farfield with a Riemann node boundary

condition. The sides of the pseudo 3-dimensional mesh are treated as symmetry

boundary conditions in the y-direction. The jet is modeled as a straight channel with

inviscid walls. The end of the channel is treated as a subsonic inflow. The subsonic

inflow boundary condition is defined by total temperature and total pressure ratios.

Therefore, it offers a consistent representation of engine bleed over a range of flow

conditions. By modeling the jet as a channel with inviscid walls, the geometry and

model are simplified. The error associated with this simplification is addressed during

uncertainty quantification.

The coordinates and grid dimensions are normalized by the airfoil chord. The
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C-type structured mesh extends 10 chord lengths above, below, and forward of the

airfoil and 20 chord lengths aft of the trailing edge.

To ensure adequate resolution of the turbulent boundary layer, its thickness (δturb)

is determined using Equation 3.19 [12]

δturb =
0.375x

Re
1/5
x

(3.19)

In Equation 3.19, x is the distance from the leading edge and

Rex =
ρ∞V∞x

µ∞
= Re/cx (3.20)

Assuming fully turbulent boundary layer at the the half-chord, the boundary layer

thickness (δturb) is approximately 1.0936∗10−2 chord lengths. At least 20 vertical cells

are recommended within the boundary layer to adequately resolve it [12]. Therefore,

the average cell height must be less than or equal to 5.468 ∗ 10−4 chord lengths for

each mesh generated.

It is also recommended that the 1st-cell non-dimensional distance from the wall,

y+, is less than or equal to one for each mesh. For a turbulent flat plate, y+ is

y+ =
0.1707yRe0.9

x

x
(3.21)

where y is the dimensional distance from the wall [12].

By assuming y+ = 1, the maximum acceptable height of the cell nearest to the

wall (∆1) is approximated in Equation 3.22.

∆1 =
5.86x

Re0.9
x

(3.22)

For Re = 2.96×106, ∆1 must be less than or equal to 8.35∗10−6 chord lengths. A
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coarse mesh without an AFC jet was generated and evaluated with a ∆1 of 8× 10−6

chord lengths. It was then systematically refined and evaluated 4 times until a grid

independent solution was reached. A grid independent solution is a solution that

does not change with additional refinement. In this study, the finest mesh, with a

∆1 of 1× 10−6 chord lengths, serves as the baseline mesh. It is shown in Figure 3.5.

Additional grid resolution is included at the trailing edge of the airfoil to account

for potential separation, reattachment, and reversed flow. The baseline mesh is used

to determine the baseline lift coefficient for each of the 20 cases and as the basis for

geometry during optimization.

(a) Full mesh view. (b) Detailed view of airfoil.

Figure 3.5. Baseline finest mesh. NACA 64A-010 airfoil, 899 X 161 nodes (143,680
cells) C-type mesh generated using Pointwise.

The location, width, and angle of the jet, specified by the Dakota optimization

algorithm, are entered into a Pointwise glyph script, which autonomously modifies the

baseline mesh in Figure 3.5 to include the AFC jet. The glyph script generates a jet

channel with a depth five times its diameter (Djet). If this default channel is too deep

to fit within the airfoil, the channel is made more shallow using the Pointwise graphical

user interface. Each channel has an average cell width of approximately 5×10−4 chord

lengths. The script also provides for additional grid refinement around the jet exit to

provide adequate resolution to capture its effects on the flow. An example of one of
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the autonomously generated meshes with a jet is shown in Figure 3.6.

(a) Airfoil. (b) Detailed view of AFC jet.

Figure 3.6. NACA 64A-010 airfoil with AFC jet (autonomously generated using the
Pointwise glyph script).

Although, the Pointwise glyph script is adequate in most cases, the strategy de-

scribed is not satisfactory for high-angle jets due to skewness at the mouth of the jet.

When θ ≤ 15◦ or θ ≥ 165◦, an alternative strategy is utilized to design the mesh. The

jet channel is separated by a connector where the jet first meets the airfoil surface.

Additional connectors are added perpendicular to the airfoil at the mouth of the jet.

The mesh surrounding the airfoil is modeled as three domains, one of which includes

the beginning portion of the channel. The lower portion of the channel (majority) is

modeled as a single domain. An example of the alternative meshing strategy is shown

in Figure 3.7.

(a) Full AFC jet channel. (b) AFC jet mouth. (c) Mesh point.

Figure 3.7. Example of alternative meshing strategy utilized when θ ≤ 15◦ or θ ≥ 165◦.
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The flow is modeled about the airfoil using the 2nd-order accurate in space, steady,

viscous solver in NASA Fun3D. Fun3D is an unstructured three-dimensional, im-

plicit, node-based, finite volume, Reynolds-averaged Navier-Stokes code developed

and maintained by researchers at the NASA-Langley Research Center. Steady iter-

ations are accomplished using a “local time step pseudo time advancement scheme

that is not time accurate” [16]. In this study, van Leer flux vector splitting is used

for the calculation of the explicit terms. The flux limiter used is the stencil-based van

Leer limiter augmented with a heuristic pressure limiter. [16]

This study uses the Spalart-Allmaras (SA) turbulence model because its baseline

results most closely reflect the experimental results of Smith and Walker, when com-

pared to Menter’s shear stress transport (SST) turbulence model and the k-omega

(k-ω) turbulence model. The SA turbulence model results differ from the experi-

mental results by 0.28-3.88%. The SST and k-ω turbulence models differ from the

experimental results by 3.83-8.36% and 0.24-5.26%, respectively. The lift coefficients

at 4 different angle of attack produced using each turbulence model are shown in

Figure 3.8. The k-ω model also closely predicts the experimental results but appears

to diverge from experimental results at high angles of attack, where the shock wave

is stronger. The SA model was also utilized by Pehlivanoglu et al. in a similar

computational study [8].
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Figure 3.8. Comparison of turbulence models to experimental results of Smith and
Walker [9] (baseline NACA 64A-010 airfoil).

During optimization, each evaluation is allowed to converge to a relatively constant

lift coefficient. A relatively constant lift coefficient is defined, in this context, as one

that does not change by more than two thousandths over 2000 or more iterations.

An example of acceptable grid convergence is shown in Figure 3.9.

Figure 3.9. Example of acceptable grid convergence during optimization.
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All computations are performed on the Department of Defense high performance

computing platform, Thunder. “Thunder is an SGI ICE X System located at the

AFRL DSRC. It has 3,216 standard compute nodes, 4 large-memory compute nodes,

178 Xeon Phi compute nodes, and 178 GPU compute nodes (a total of 3,576 compute

nodes or 125,888 compute cores). It has 460 TBytes of memory and is rated at 5.62

peak PFLOPS.” [26] Each computation takes approximately two CPU hours on 36

cores. Approximately 250,000 core-hours were used during the course of this study.

3.5 Verification, Validation, and Uncertainty Quantification

After arriving at an optimized or significantly improved design, elements of ver-

ification, validation, and uncertainty quantification are conducted. This study does

not include independent code verification. Refer to Reference [27] for verification of

Fun3D with the SA turbulence model.

3.5.1 Numerical Uncertainty

Iterative error is introduced by not allowing the computations to converge com-

pletely during optimization. To quantify the numerical uncertainty due to iterative

error, the improved design is allowed to fully converge as defined in Section 2.7.1. The

difference between the fully converged solution and that used during optimization is

used to calculate the uncertatinty due to iterative error.

The mesh associated with the final design is systematically coarsened by a fac-

tor of two and systematically refined by a factor of two to produce two additional

meshes. The two additional meshes are computationally evaluated to convergence

using Fun3D and the lift coefficient predicted by each mesh is recorded. The un-

certainty due to discretization error is estimated using the results from the three

systematically refined grids, Equation 2.7, and Equation 2.8.
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The uncertainty due to round off error is approximated as one percent of the

discretization error. The total numerical uncertainty is approximated using Equation

2.6.

3.5.2 Model Form Uncertainty

Although Smith and Walker’s experimentation was extensive, it is unlikely that

the optimized solution from this study is identical to any one experimental design

tested. Therefore, it will not be possible to compare the computational results directly

to experimental results. Rather, model form uncertainty is estimated by evaluating

the improved design under a number of variable model parameters.

Although the SA turbulence model most closely matched the experimental results

of Smith and Walker, it does not guarantee that it is providing the most accurate

representation of the flow. The percent difference between each turbulence model is

translated to the final design to estimate model form uncertainty. A factor of safety

of 1.5 is included to account for the added momentum associated with blowing.

In this analysis, the solution is assumed to be steady. If incorrect, this assumption

may introduce additional model form uncertainty. To estimate that uncertainty, the

solution is reevaluated as unsteady. A number of decreasing time steps are evaluated

until the solution no longer changes with decreasing time step. The difference between

the steady-state solution and the time-accurate solution may be used to estimate

model form uncertainty due to steady analysis.

The time-accurate solution is second-order accurate in time. Careful selection

of the time step is required to adequately capture the flow characteristics. It is

recommended that at least 200 time steps are evaluated over each oscillatory/time

cycle [16]. In this case, the time cycle of the flow physics is unknown. It is estimated

as the time required for a single particle to depart the jet and travel to the boundary
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of the mesh, approximately 0.09 seconds. Therefore, the largest time step evaluated

is 4.5∗10−4 seconds. The number of iterations is adjusted for each time step to ensure

that 10 complete oscillatory cycles are evaluated.

3.5.3 Input Uncertainty

The input uncertainty associated with Mach number, angle of attack, and Reynolds

number are incorporated into the optimization framework. The results associated

with each of the 20 cases evaluated are used to generate four unique EDF’s. The

span of the EDF’s is representative of the input uncertainty resulting from uncertain

Mach number, Reynolds number, and angle of attack.

The Mach number, Reynolds number, and angle of attack are not the only un-

certain inputs, however. In reality, each of the design variables also has some degree

of uncertainty. These additional sources of uncertainty are not considered in this

analysis.

3.5.4 Total Predictive Uncertainty

Finally, total predictive uncertainty is estimated and graphically expressed in the

form of a p-box. The center of the predictive uncertainty p-box is made up of the

area between the input uncertainty EDF’s. The p-box is expanded by the percent

model form uncertainty and total numerical uncertainty in each direction.
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IV. Results and Discussion

4.1 Optimization

Using LHS, Dakota generated 20 random designs. Of those 20 initial designs,

only seven proved feasible. The remaining 13 designs did not produce a great enough

change in lift to satisfy the lift constraint in Equation 3.12. The 20 initial designs

and their results are included in Table 4.1. The feasible designs are highlighted in

green and the infeasible designs are highlighted in red.

Table 4.1. Initial 20 designs specified by Dakota.

Using the optimization formulation described in Chapter III, the design points

quickly converged to a physically infeasible design. Within just five iterations, the

prescribed Djet was too small to be modeled using Pointwise. Despite returning infea-

sible solutions, the solver continued to prescribe designs that could not be generated.
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To remedy the issue, an additional constraint was placed on Djet.

Djet/s > 1× 10−3 (4.1)

Equation 4.1 ensures that Djet is greater than 0.1% of the arc length (approximately

0.2% of the chord). In doing so, each design can be generated using Pointwise. This

constraint is also physically logical. If the airfoil chord is one meter, for example, the

jet diameter must exceed 2 millimeters.

Unfortunately, the algorithm continued to generate infeasible designs even with

the new constraint. The designs could be generated in Pointwise, but continued to

produce very little change in lift. There are a number of possible explanations for this

failure. It is possible that the initial sample size was inadequate. The surrogate was

generated from just 20 samples, of which only 7 were feasible. Therefore, it is likely

that the feasible region is poorly represented by the surrogate. Given more time, it

would be beneficial to build the initial surrogate from 100 or more Latin hypercube

samples.

It is also possible that the failure is attributed to the problem formulation. The

problem is designed such that the objective and constraint functions are conflicting.

Small diameter jets with a low total temperature ratio generate small mass flow rate

and minimize the objective. However, those jets also produce the smallest change in

lift and do not meet the constraints. The optimizer appears to be placing too little

emphasis on meeting the constraint.

Although time limitations do not allow for expansion of the initial sample size, the

problem framework can be altered. A constraint penalty is introduced to the objective

function. For each design that failed to meet the lift constraint, the objective function

was increased. The updated objective function (f) including the constraint penalty

is
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f = Cṁ + 0.2 ∗max(0, (0.1022−∆Cl + 2σ∆Cl)) (4.2)

By altering the objective in this way, the separate constraint function is no longer

necessary. Now, the designs that meet the lift constraint also produce the smallest

objective function. The updated objective values are included in Figure 4.2. The

designs that failed to meet the original constraint are highlighted in red. The smallest

objective function is now returned by the feasible design with the smallest Cṁ.

Table 4.2. Initial 20 designs with constraint penalty.

It was also revealed during initial optimization that Dakota will prescribe designs

that are non-physical despite the linear constraint expressed in Equations 3.6 and

3.7. To remedy this issue, Equations 3.6 and 3.7 are replaced by additional bounds

on the location of the jet, such that ` is now constrained between 0.01 and 0.99 of the

arclength, s. In other words, the center of the jet cannot be positioned in the final
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2% of the chord. This constraint ensures the jet does not extend past the trailing

edge of the airfoil and that there is enough room for the jet channel to be modeled.

The updated optimization problem is included in Equation 4.3.

Minimize f = Cṁ + 0.2 ∗max(0, (0.1022−∆Cl + 2σ∆Cl))

subject to 0.01 ≤ `/s ≤ 0.99

1× 10−3 ≤ Djet/s ≤ 0.0125

3◦ ≤ θ ≤ 177◦

0.302 ≤ Tt,jet/T∞ ≤ 1.581

(4.3)

Using the updated optimization framework, 26 additional designs were generated

and evaluated. After 26 iterations, a change to EGO was implemented to improve

the optimization process. The 26 iterations before the change are shown in Figure

4.1. The designs variables are normalized by their maximum value. The objective

function value generated by each design is also included. The 20 designs of the initial

population from which the first surrogate was generated is not included.
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Figure 4.1. Scaled design variables (top) and resulting objective function (bottom) for
first 26 design points.

Figure 4.1 shows the variability associated with the optimization. The optimal

point selected from the surrogate changes drastically with each iteration. This is

evidence that the surrogate is not properly modeling the solution space. If the sur-

rogate were accurately representing the space, the optimal point selected in ensuing

generations would likely remain relatively consistent or follow trends. It is clear that

the initial population of 20 designs was not adequately large.

In the hopes of better capturing the solution space with the surrogate, a change to

EGO is implemented. The surrogate is generated in the same way (Gaussian process)

using all of the design points generated; however, the selection of the next design from

that surrogate has changed.

Using EGO, 20 more designs were generated and computationally evaluated.

Those designs are shown in Figure 4.2 in addition to the 26 designs generated us-

ing surrogate-based global optimization.
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Figure 4.2. Scaled design variables and resulting objective function for 46 iterations
(final 20 generated using EGO).

The final 20 EGO iterations indicate more promising trends towards an improved

solution. The average objective function value has decreased from 0.0146 over the

first five iterations to 0.0056 over the final five iterations. Only one design of the

final 14 designs generated failed to satisfy the lift constraint. This is a significant

improvement over the initial random population, where 65% of the designs failed to

satisfy the constraint.

In general, the design variable values at each new design point show less variation.

θ appears to be settling near 90◦, or normal to the surface. Over the last 10 iterations,

the standard deviation of θ is just 16.0%, compared with 57.7% from the first 10. The

location also appears to be trending toward the upper surface of the trailing edge.

The decreased variability between designs shows that the surrogate is beginning to

better represent the solution space. However, an optimal design point has clearly not

yet been determined. The design points selected by the surrogate continue to change;

thus, the surrogate continues to change.

Due to time restrictions, optimization is truncated at this point. However, from
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the best designs generated, some interesting results can be gained. The 20 best

designs are presented in order of increasing objective value in Figure 4.3.

(a) Normalized jet location (`/`max) (b) Normalized jet diameter (
Djet

Djet,max
)

(c) Normalized jet angle (θ/θmax) (d) Normalized Tt ratio (Tt,jet/Tt,jet,max)

Figure 4.3. 20 best designs generated during optimization.

Although these designs are unique, they have many similarities. In 18 of the 20

designs, ` is less than 25% of its maximum value (`/s ≤ 0.25). In 10 of the 20 designs,

Djet falls within 13 and 24% of its maximum value (0.0016 ≤ Djet/s ≤ 0.0030). There

is also a relationship between θ and Djet. The 10 designs with the smallest Djet in

Figure 4.3 have a θ between 61◦ and 112◦. Therefore, a majority of the best designs

generated thus far have a relatively small diameter jet positioned near the trailing

edge of the upper surface of the airfoil with a blowing jet oriented perpendicular to

the flow. Lastly, all of the best designs generated have a total temperature ratio

greater than 55% of the maximum (Tt,jet/T∞ ≥ 0.8696). These results are logical

because boundary layer growth is greatest near the trailing edge. Momentum from
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the jet will have the most pronounced influence here. It is likely not a coincidence

that a traditional aileron is also located at the trailing edge.

4.2 Improved Design

Despite the failure of the optimization algorithm to reach an optimal solution

within time restrictions, 41 of the 66 total designs produced feasible solutions. Of

those 41, one design (design 9) required a Cṁ of just 1.763× 10−3. When translated

to the Boeing 747 discussed is Section 3.3.3, this correlates to approximately 7.136

kg/s or just 1.14% of the mass flowing through one of its four CF6 engines.

Design 9 specifies Djet/s = 1.99 × 10−3, `/s = 0.991, θ = 63.4◦, and Tt,jet/T∞ =

1.394. Although it may not be optimal, design 9 satisfies the performance constraint.

If the assumptions made in this analysis are correct, then design 9 shows that a steady

blowing AFC jet could effectively replace traditional control surfaces during cruise.

However, further analysis with additional modeling complexity is required to confirm

that the assumptions are indeed accurate.

Design 9 features a small diameter blowing jet located on the lower surface of the

trailing edge of the airfoil. The design is shown in Figure 4.4 with Mach gradients

and vectors.
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Figure 4.4. Trailing edge of design 9 (Re = 0.95 × 106, M = 0.75, α = 0◦, Fun3D, SA
turbulence model).

The jet channel is noticeably shorter than that shown in Figure 3.6. This is

a result of the limited space available near the airfoil trailing edge. The channel

length was manually adjusted after execution of the Pointwise glyph script to remain

geometrically feasible.

The AFC jet is positioned near the trailing edge of the airfoil. The flow about

the airfoil with the AFC jet is compared to the flow about the baseline airfoil and to

that of an aileron in Figure 4.5. Figure 4.5c shows an NACA 64A-010 airfoil with an

aileron (final 30% of the chord) deflection of 4 degrees that has been computationally

modeled using Fun3D under identical flow conditions. The freestream conditions in

all three cases are the same (Re = 0.95 ∗ 106, M = 0.75, and α = 0◦).
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(a) Baseline NACA
64A-010 airfoil

(b) NACA 64A-010
airfoil with AFC jet

(c) NACA 64A-010 airfoil
with 4◦ aileron deflection

Figure 4.5. Visualization of flow about design 9 compared to the baseline airfoil and
aileron (Re = 0.95 ∗ 106, M = 0.75, and α = 0◦).

The pressure in Figure 4.5 is in nondimensional Fun3D units. Figure 4.4 shows

that the AFC jet does not act entirely like an aileron; however, Figure 4.5 shows that

the overall effect is similar. The AFC jet in Figure 4.5b, like an aileron, creates an

increased pressure difference between the upper and lower surface of the airfoil. With

AFC jet blowing, the pressure along the upper surface of the airfoil is decreased and

the pressure along the lower surface is increased. Further, for a comparable increase

in lift coefficient for blowing and for a deflected aileron, the blowing case results in a

somewhat weaker shock on the upper surface, which serves as another possible per-

formance improvement. The similarity in effects of this design to a traditional aileron

is convenient and not entirely surprising. A traditional aileron offers effective control

over a broad range of flow conditions. Therefore, an AFC jet that can manipulate

the flow in a similar manner should provide similarly robust control. Additionally,

the AFC jet is more likely to provide variable control in a similar manner to typical

ailerons. This idea should be analyzed further in future studies.

4.3 Uncertainty Quantification

In the absence of an optimal solution, uncertainty quantification is performed on

design 9.
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4.3.1 Input Uncertainty

The input uncertainty in the optimization is expressed in Figure 4.6. Four variable

Mach number EDF’s are shown together.

Figure 4.6. Results of input uncertainty from variable Mach number, Reynolds num-
ber, and angle of attack.

Figure 4.6 demonstrates the effects of the sources of uncertainty associated with

the solution. The Reynolds number has very little impact on the effectiveness of the

jet. At α = 0◦, the difference in Reynolds number results in just 0.2% difference in

∆Cl. At α = 3◦, the maximum difference is 3.7%. Thus, Reynolds number is not a

large contributor to uncertainty.

The change in lift generated by the jet is significantly affected by variable Mach

number and angle of attack. Although the mean change in lift generated at each angle

of attack is similar, the distribution varies greatly. At α = 3◦ and Re = 0.95 × 106,

the uncertainty due to change in Mach number from 0.712 to 0.788 is 40.0%. In

comparison, the uncertainty due to change in Mach number is just 12.1% for α = 0◦

and Re = 0.95× 106.

In each EDF, the points are plotted in order of increasing ∆Cl, not necessarily in

order of increasing Mach number. As a result, the extent to which the performance
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varies with Mach number is not directly captured in Figure 4.6. In this study, the

performance increases with increasing Mach number for α = 0◦ but decreases for

α = 3◦. This trend is shown in Figure 4.7 for a constant Reynolds number of 0.95×106.

Figure 4.7. Variable performance (∆Cl) caused be increasing Mach number for two
discrete angles of attack.

There is a 24.9% decrease in performance (∆Cl) when the angle of attack is

changed from 0 to 3 degrees for Mach 0.788 freestream conditions. There also exists

a Mach number between 0.75 and 0.766 where there is no difference in the change in

lift generated for the two angles of attack. These interesting results can be attributed

to the presence of a strong shock wave at three degrees angle of attack for M = 0.788

flow. Figure 4.8 shows the Mach gradient around design 9 for α = 0◦ and α = 3◦.

The freestream Mach number and Reynolds number are the same (M = 0.788, Re =

0.95× 106).
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(a) α = 0◦ (b) α = 3◦

Figure 4.8. Flow visualization comparison of Design 9 for α = 0◦ and α = 3◦ (M = 0.7884,
Re = 0.95 ∗ 106, Fun3D, SA turbulence model).

The shock wave for α = 3◦ is significantly stronger than that at α = 0◦. There

is also a greater region of separation beyond the shock when α = 3◦, resulting in a

much smaller lift increase due to AFC blowing.

The effectiveness of the AFC jet is heavily dependent on the angle of attack,

especially at the most extreme Mach numbers. The maximum and minimum angle

of attack were carefully selected to represent cruise conditions. By evaluating only

the upper and lower limits during optimization, computational expenses were saved.

However, the relationship between angle of attack and performance may not be linear.

For each Mach and Reynolds number, α = 1.5◦ is evaluated to further evaluate input

uncertainty. The EDF’s associated with α = 1.5◦ are included in Figure 4.9.
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Figure 4.9. Ensemble of EDF’s showing effects of input uncertainty including α = 1.5◦.

The original EDF’s are dashed lines in Figure 4.9 and the new ones are solid

lines. The results associated with α = 1.5◦ show that the relationship between angle

of attack and AFC jet performance is nonlinear and potentially discontinuous. The

average performance associated with α = 1.5◦ is greater than that achieved when

α = 0◦ and α = 3◦. This result is also likely attributed to the formation of a

strong shock wave at α = 3◦. The AFC jet generates an increase in performance

as Mach number and angle of attack are increased until the shock wave reaches

some undetermined strength. Although not performed in this study, a sensitivity

analysis would reveal the precise Mach number at a particular angle of attack where

performance begins to decrease. This relationship has important ramifications in

regard to control. The performance is dependent not only on the jet, but also on the

freestream conditions.

The effect of shock waves on performance demonstrate the importance of OUU.

If a design were optimized strictly for Mach 0.75 at α = 0◦, that design would likely

not be adequate in the presence of a shock. Proper selection of uncertain input

parameters is also vital. This is exemplified by analyzing design 9 at angles of attack
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outside of the predicted range. Angles of attack -1◦ and 4◦ are evaluated for each

Mach number. The EDF’s associated with these new angles of attack are added to

the input uncertainty in Figure 4.10.

Figure 4.10. Expanded ensemble of EDFs due to input uncertainty at α = −1◦ and
α = 4◦.

Overall performance is decreased for α = −1◦ and α = 4◦. The same AFC jet

generates a 27.2% smaller change in lift when the angle of attack is increased from

1.5◦ to 4◦ in Mach 0.788 flow. This result demonstrates the importance of sample

selection in OUU. The jet has been designed to operate in a robust manner, but only

within a specified flight regime. Outside of the flight regime of interest, there is no

guarantee that the design will remain useful.
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4.3.2 Model Form Uncertainty

Figure 4.11 shows the results of the time accurate analyses.

Figure 4.11. Time accurate convergence history compared to steady-state.

The y-axis scale spans only five ten-thousandths of a lift coefficient to highlight

the difference between the steady state and time accurate solutions. Each of the time

accurate solutions approaches a steady-state solution value. The difference between

the converged steady-state solution and the smallest ∆t time-accurate solution is

0.004%. Therefore, steady state is a valid assumption and does not appreciably affect

the solution. The model form uncertainty due to steady-state analysis is negligible

when compared to that caused by the turbulence model.

In Figure 3.8, the greatest lift coefficient is predicted by the k-ω turbulence model.

The smallest is predicted by the SST turbulence model. For α = 3◦, the difference

between each is 12.23%. Accounting for a factor of safety of 1.5, a model form

uncertainty of 18.35% is applied to the α = 3◦ EDF’s. For α = 0.5◦, the difference

is 6.45%, so 9.68% model form uncertainty is applied to the α = 0◦ EDF’s. Those

expanded EDF’s are shown in Figure 4.12. The dashed lines are the model form

EDF’s and correlate to the input uncertainty EDF’s of the same color.
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Figure 4.12. Input uncertainty EDF’s expanded to include model form uncertainty.

The total model form uncertainty and input uncertainty is shown in Figure 4.13.

Figure 4.13. P-box including model form uncertainty and input uncertainty.

The model form uncertainty vastly outweighs the input uncertainty. The model

form uncertainty is a direct result of limited experimental validation data. If a vali-

dation experiment were performed on the design of interest, model form uncertainty
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could be better approximated using the area validation metric explained in Section

2.7.2. Although it is likely that the SA turbulence model does indeed best predict

the flow, there is not enough data available at this time to confirm that assumption.

4.3.3 Numerical Uncertainty

Figure 4.14 shows the convergence history for design 9 under mean flow conditions

(Re = 1.955 ∗ 106, M∞ = 0.75, and α = 1.5◦).

Figure 4.14. Grid convergence history (acceptable during optimization) for design 9
under mean flow conditions (Re = 1.955 ∗ 106, M∞ = 0.75, and α = 1.5◦).

Although this convergence is considered acceptable during optimization, it is not

fully converged and is a source of numerical error. To estimate the iterative error,

the same design is allowed to fully converge over 160,000 iterations. The convergence

history is included in Figure 4.15. The orange solid line shows the convergence history

of the truncated solution for optimization analysis, while the blue line shows the

iterative history of the fully converged solution. By greatly decreasing the y-axis scale,

it is easy to see that the solution is not fully converged after just 8,000 iterations.
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Figure 4.15. Fully converged convergence history compared to accepted convergence
history for design 9 under mean flow conditions (Re = 1.955 ∗ 106, M∞ = 0.75, and
α = 1.5◦).

The difference in lift coefficient between the fully converged solution in Figure

4.15 and that in Figure 3.9 is 2.61× 10−3; this is shown graphically as the difference

between the orange dotted line and the blue line. The uncertainty due to iterative

error, UIT , is 0.40%. Although the iterative error is relatively large, it is deemed

acceptable during optimization. By truncating the solver before true convergence,

computational expenses are cut by approximately 95%. Also, most designs generate

a change in lift that is significantly greater or less than that required by the lift

constraint (Equation 3.12).

The results of the systematic mesh refinement study are included in Figure 4.16.

The original mesh used during optimization (h=2) contains 189,480 cells, the refined

mesh (h=1) contains 757,920 cells, and the coarsened mesh (h=4) contains 47,370

cells.
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Figure 4.16. Systematic mesh refinement study under mean flow conditions (Re =
1.955× 106, M∞ = 0.75, and α = 1.5◦).

Using the results shown in Figure 4.16 and Equation 2.5, the observed order of

accuracy is determined to be 1.40. There is a 30% difference between the observed

order of accuracy and 2nd-order formal accuracy. This difference is due primarily to

the presence of a shock wave and mesh singularities. It could also be attributed to

failure of the coarsest mesh to properly capture the complex flow physics, particu-

larly around the AFC jet. The jet is only horizontally spanned by five cells in the

coarsest mesh. In Figure 4.17, the large Mach gradient estimated by those five cells

is visualized.
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Figure 4.17. View of AFC jet (design 9) with coarsest mesh and Mach gradient.

From Equation 2.7 and the results of the systematic mesh refinement study, the

discretization error is approximately 0.029. However, a factor of safety of three is used

to estimate UDE to account for the poor observed order of accuracy. The uncertainty

due to discretization error, from Equation 2.8, is 0.087 or 13.33%. The round-off error

is approximately 2.9× 10−4 or 0.04%.

The total numerical uncertainty, from Equation 2.6, is approximately 13.77%. By

adding the numerical uncertainty to the input and model form uncertainty, the total

predictive uncertainty is determined. The total predictive uncertainty is shown in

Figure 4.18 in the form of a p-box.
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Figure 4.18. P-box representing total predictive uncertainty.

Ninety-seven percent of the numerical uncertainty can be attributed to UDE. The

numerical uncertainty, therefore, is primarily a result of the grid used for analysis.

If the systematically refined mesh in Figure 4.16 had been used during optimization,

the numerical uncertainty would be reduced to just 5.24%. However, the finer mesh

required roughly eight times the number of processor core-hours to converge. At

the cost of additional uncertainty, the coarser mesh was used during this analysis to

expedite the optimization process and to save computational resources.

Design 9 has a predicted total uncertainty of±40.9%, of which±8.8% is attributed

to input uncertainty, ±13.8% to numerical uncertainty, and ±18.3% to model form

uncertainty.
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V. Conclusions and Recommendations

Although an optimal design is not determined, a number of designs may provide

robust control over a range of uncertain flow conditions representing transonic cruise.

Design 9 is one such design. It features a steady blowing AFC jet positioned at

`/s = 0.99, with Djet/s = 1.99×10−3, an angle of θ = 63.4◦, and a total temperature

ratio (Tt,jet/Tt,jet,max) of 1.3941. The design requires a coefficient of mass flow rate of

just 1.76× 10−3. Translated to a Being 747, this is approximately 7.136 kg/s or just

1.14% of the mass flowing through one of its four CF6 engines.

The results show great promise in regards to control via a steady blowing AFC

jet in transonic flight. A 2-dimensional change in lift equivalent to that required

by an aileron can be generated with relatively little external mass injection. How-

ever, additional computational research should be conducted before proceeding to

wind tunnel or flight test. Additional design variables and ulterior AFC mechanisms

should be considered during optimization, including unsteady actuation and suction.

A 3-dimensional computational study of the optimal design is also recommended. The

change in drag and pitching moment affected by the AFC jet should be analyzed to

ensure there are no undue consequences of its implementation. Additional uncertain

inputs, such as that associated with the design variables, should also be considered.

Furthermore, the determination of the mass flow rate should be automated to main-

tain consistency.

The OUU framework utilized here also proved effective, despite the failure to

reach a converged optimum. By incorporating the performance mean and standard

deviation into the optimization, many of the design points produced an adequately

robust change in lift over a range of flow conditions. The framework requires a large

number of function evaluations, however. It is recommended that OUU is performed

with relatively inexpensive computations to narrow the design space. Once a region
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of interest is determined, a more accurate computational model should be utilized to

determine a robust solution with an acceptable quantity of uncertainty.

Uncertainty quantification is performed on a promising design generated early in

the optimization process, design 9. The uncertainty quantification serves as an ex-

ample of the process that should be completed for the optimal solution. Design 9 has

a predicted total uncertainty of ±40.9%, of which ±8.8% is attributed to input un-

certainty, ±13.8% to numerical uncertainty, and ±18.3% to model form uncertainty.

The input uncertainty captures uncertain Mach number, Reynolds number, and an-

gle of attack during cruise. The numerical uncertainty can be accredited primarily

to a relatively coarse mesh and the first-order effects of modeling a shock wave. The

model form uncertainty could be decreased significantly with validation data. With-

out validation data, the model accuracy is difficult to estimate and a conservative

uncertainty estimation must be applied. Further analysis with a refined mesh and

comparison to a validation experiment would greatly reduce the total predictive un-

certainty associated with the design.

Over the course of this study, multiple changes were made to successfully reach an

improved design. The optimization problem was reorganized to adequately balance

the objective and lift constraint into a single objective function. A minimum jet di-

ameter and constraints on location were introduced to ensure that the designs could

be physically modeled. The optimization approach was also altered from surrogate-

based global optimization to efficient global optimization. Both algorithms generate

surrogates using a Gaussian process, but differ in their optimization method applied

to that surrogate. The ability to change the optimization framework while still uti-

lizing the design points generated proved a valuable advantage of surrogate-based

optimization. It was also shown that EGO is a good alternative to surrogate-based

global optimization in cases where the initial sample is too small to generate an
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adequate surrogate.

The final optimization approach is improved, though still imperfect. The initial

sample from which the surrogate was generated should have been significantly larger.

An initial population of 100 or more would have provided a more accurate represen-

tation of the design space. Although surrogate based optimization allows for changes

in the framework quite well, the framework should remain constant for optimum per-

formance of the algorithm. If EGO had been used from the beginning, the surrogate

might better represent the solution space after the same number of iterations.

Additionally, if optimization were to be continued to a true optimal, a gradient-

based approach should be considered. Surrogate-based optimization is very effective

in determining a region of interest from a global design space. Once limited to a

single region of interest, however, gradient-based optimization will more quickly ap-

proach the global minimum, assuming the objective function in that region is not

discontinuous. This technique is known as hybrid optimization.
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Appendix A. Sample Fun3D Input File
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Appendix B. Dakota Input File: EGO
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Appendix C. Dakota Input File: Surrogate-based
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Appendix D. Analysis Driver BASH Script
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Appendix E. Sample Pointwise Glyph Script
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Appendix F. Sample PACMAN Input File
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Appendix G. BASH Script for Generating New Grid
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Appendix H. BASH Script for Changing Fun3D Input File
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